
Using Buildbot

Adding New Tests

TODO: detailed description. Short version: add new tests that run from "make check".

Adding New Build Types

Sometimes, just adding tests isn't enough, and you need to add completely new types of builds using different
commands or different configuration options. Doing so is straightforward and not much more complicated than
typing out the shell commands you want to run. Let's start with a simple example:

moab_serial = factory.BuildFactory()
moab_serial.addSteps([
 Clean(),
 SVN(svnurl=moaburl),
 Autoreconf(),
 Configure(),
 Compile(),
 Test(command=["make", "check"]),

])

c['builders'].append({
'name': "moab-serial",
'slavename': "gnep",
'builddir': "moab-serial",
'factory': moab_serial,
'category': "moab",
})

The first thing we do is create a BuildFactory, which will hold the steps we want to run in our build. We then
add the list of steps we'd like to run. Each step is a Python object that we construct in-place. Buildbot ships with a
bunch of commands (e.g. SVN, Compile, Test), and our Buildbot adds a few more (Clean, Autoreconf,
Configure, Distcheck, Install, Upload). Some of these steps have special options you can pass to the
constructor to change their behavior.

You might notice that we specify a command for the Test step; this changes the shell command that gets run. You
may also notice that we split the command into two separate strings. This allows the Buildbot to bypass the shell
and execute the command directly.

Once we've added our build steps, we can then create the builder itself. To do so, we simply add some
configuration options to a list of builders, specifying a name, slave(s) to run the build on, the directory to build in,
the factory we just created, and optionally a category. We use the category to separate out the builds so that MOAB
emails go to the MOAB list, CGM emails go to the CGM list, etc.

Not let's look at a more advanced example:

pytaps = factory.BuildFactory()
pytaps.addSteps([
 SVN(svnurl=pytapsurl),
 Compile(command=[

"python", "setup.py",

Using Buildbot 1

 WithProperties("--iMesh-path=%(packages)s/moab-shared"),
 WithProperties("--iGeom-path=%(packages)s/cgm-shared"),
 WithProperties("--iRel-path=%(packages)s/lasso-shared"),

"install", WithProperties("--home=%(packages)s/pytaps")
]),

 Test(command=["python", "setup.py", "test"],
 env={"LD_LIBRARY_PATH": WithProperties(

"%(packages)s/moab-shared/lib:" +
"%(packages)s/cgm-shared/lib:" +
"%(packages)s/lasso-shared/lib:" +

 cubit_base+"/bin"
)}

)
])

Here, our commands are considerably more complicated, using a new construct called WithProperties. Each
build or build slave can have a number of special properties that you can use in your build steps. Here, we use a
property called "packages" which refers to the root directory of our installed libraries. This allows us to run the
command on any machine without special-casing the paths for each slave.

Adding New Build Types 2

	tmpRI0VYXtracpdf

